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Abstract

This study presents a transient nonlinear finite element analysis within the realm of

a multi-body dynamics formulation for determining the dynamic response of a

moderately thick laminated shell undergoing a rapid and large rotational motion and

nonlinear elastic deformations. Nonlinear strain measure and rotation, as well as the

transverse shear deformation, are explicitly included in the formulation in order to

capture the proper motion-induced stiffness of the laminate. The equations of motion

are derived from the virtual work principle. The analysis utilizes a shear deformable

shallow shell element along with the co-rotational form of the updated Lagrangian

formulation. The shallow shell element formulation is based on the Reissner-Mindlin and

Marguerre theory.
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Introduction

Thick laminated composites such as helicopter blades can experience large elastic

displacement and rotations due to rapid and large rotational motions. Any attempt to

design composite helicopter blades must include the effect of motion-induced stiffness

in both the longitudinal and chordwise directions. The stress analysis capability must

account for the interaction of the nonlinear elastic deformations with the overall

dynamic motion.

Review of previous studies relevant to helicopter blade design reveals that the

majority of the analyses are limited to beam-type approximations, disregarding the

chordwise deformations. In order to eliminate this shortcoming, Bhumbla and Kosmatka

[1], Bauchau and Chiang [2], and Kosmatka [3] employed shear deformable shell

elements within analyses restricted to rotating laminates under constant angular

velocity. Their formulations exclude the effect of spin-up time, during which the angular

velocity is not constant. Furthermore, the influence of the coupling between the rigid-

body motion and the flexible deformation is not reflected in the construction of the

mass matrix in any of these models. The inertial loads are treated as known external

forces. Within multibody dynamics formalism, the mass matrix should include the

coupling between the rigid-body motion, inertial forces, and the elastic deformations so

that the inertial loads can be determined as part of the solution. Changes in inertial

loads due to spin-up or external loads become important, especially in aeroelastic

tailoring of the composite blades.

In order to account for this discrepancy, Bauchau and Kang [4] considered a

multibody dynamics formulation coupled with elastic deformations. Their analysis,

however, employs only beam-type finite elements. Extensive reviews of relevant

multibody dynamics formulations coupled with elastic deformations can be found in

Boutaghou et al. [5] and Tsang [6].

Although the response of an elastic beam subjected to a sudden slew rate coupled

with large elastic deformations has been investigated extensively, there are no analyses
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regarding the dynamic response of an elastic shell undergoing large overall motion

accompanied by large elastic displacements and rotations. Banarjee and Kane [7],

Banerjee and Dickens [8], Chang and Shabana [9-10], Boutaghou et al. [5], and Tsang

[6] included the interaction of large overall motion and small strain elastic

deformations. The complexity of the problem arising from the interaction of large rigid-

body translational and rotational motions and large displacements and rotations renders

the analytical and numerical predictions very difficult.

All of these previous analyses are limited to isotropic plates and suffer from loss

of additional motion-induced stiffness due to large elastic displacements (membrane

and bending) and rotations. Also, they require that the rigid-body motion be known a

priori. The coupling between bending and stretching and bending and twisting in

anisotropic composite plates and the presence of initial curvature further complicate the

problem.

The present analysis is aimed at capturing the motion-induced membrane and

bending stiffness variations by explicitly including the nonlinear strain measure and

rotations and the transverse shear deformations. It is to be noted that none of the

available finite element analyses, including commercial programs, have the capability to

solve this problem within the realm of multibody dynamics formalism. The transverse

shear deformation, which is essential for accurate failure prediction of thick composite

laminates, is included by extending Tessier's [11] shallow shell element into the

nonlinear range and its implementation into the transient finite element formulation

within the framework of multibody dynamics formalism.

Equations of Motion

The kinematic description of a point P in a three-noded shallow shell element

between time t and t + At is illustrated in Fig. 1. The equations of motion are derived

based on the concept of virtual displacements in conjunction with the co-rotational form

of the updated Lagrangian description of motion. The formulation utilizes the inertial,
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body-fixed, and element Cartesian coordinates as (x, y, z), (x', y', z'), and (x", y", z"),

respectively. The configuration at time t + At represents the unknown current

equilibrium configuration. The last known equilibrium configuration is at time t, and it is

referred to as the updated configuration. In the updated Lagrangian form of the co-

rotational approach, the current configuration utilizes the projection of the deformed

element surface onto the x"-y" plane of the element coordinate system in the updated

configuration as a reference configuration. The angular velocity, .Q(t), of the shell

arising from either a prescribed slew rate or external forces results in the rigid-body

motion of the element coordinate system as the deformation proceeds.

Matrices Z and T are utilized in transforming a vector from the element coordinate

system to the body-fixed frame and from the body-fixed frame to the inertial frame,

respectively. A vector with a single prime or a double prime is defined with respect to

base vectors of the body-fixed or element coordinate system, respectively.

In the absence of body forces, the virtual work done at time t + At in the kth

element due to inertial, internal, and external forces is expressed as

f Itv _ t+At_ ==t'.-'tvP _ t+AtaT t+_t_ dtV + t ET dtV _rO (1)

In this expression, the left subscript indicates the configuration by which the quantity is

measured. The left superscript refers to the configuration of the body at a specific

time. The volume of the kth facet shell element containing the point P at time t is

denoted by tV. Differentiation with respect to time is denoted by (.) superscribed above

the variable, and its virtual value by 5.

The position of point P at time t + At is described by the vector t*_,tR in reference

to the origin of the inertial coordinate system, (x, y z). The components of the

incremental Green strain tensor and the Piola-Kirchhoff stress tensor associated with the

kth element are contained in vectors t E and t*_S, respectively. The virtual work for the

_kth element due to nodal forces and moments at time t + At is denoted by 5_'P'. The

constant mass density of the material is denoted by p.
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Virtual Work by Inertial Forces. Based on the kinematics of motion as

illustrated in Fig. 1, the position of point P in the kth element at time t + z&t is

expressed as

t+At R = t+Z_tR0 + t+_,tr (2)

where t*AtR 0 describes the rigid-body motion of the shell by the position of the origin

of the body-fixed frame (x', y', z') at time t + At. Relative to this body-fixed frame, the

point P undergoes rigid- and flexible-body motions from the previously known

configuration to the current (unknown) configuration. Between time t and t + At, the

rigid-body motion and elastic deformation of point P are specified by tr and t+Atu,

respectively. In reference to the body-fixed frame, the position of point P at time t + At

is given by t+Atr. (In the remaining expressions, the left superscript is dropped for

simplicity unless it is different from t + At.) Applying the variational operator to Eq.

(2), with the use of the transformation

r = Tr' , with r' = tr' + u' (3)

and the variation of T given by

6T = 6,_ T (4)

puts Eq. (2) in the following form:

_R - 6R 0 - T 1"' TT$=, - + T6u' (5)

where $=,. is the virtual rigid-body rotation vector. Hereafter, "'--" indicates a skew-

symmetric matrix and $_- is a skew-symmetric matrix with virtual rotations of the body-

fixed frame.

The acceleration at point P is given by

-- I_ = i_0 T 7' TT£ + TtJ' + 2£Tu' + £_Tr' (6)



Relative to the body-fixed frame, the incremental displacement vector, u', is

expressed in terms of the incremental total nodal vector, v', as

u'- Nmv' (7)

based on the finite element displacement approximation with the interpolation matrix,

N m. The total nodal vector consists of the incremental elastic displacement, u'0i , and

rotation, 0'0i, at each node of the kth shallow shell element shown in Fig. 2 and is

defined as

v -{v,T (8)

in which v'iT {U'0Ti,T- 00i}.As suggested by Christensenand Lee [12],the negligibletime

variation of the interpolation matrix, Nm, leads to

u' - N;n,i' and ii -.N_ _/' (9)

Utilizing the transformation matrix, Z, associated with the kth element, the incremental

displacement vector, u', is expressed as

u' - Zu" (10)

The transformation between the incremental total nodal vectors defined relative to the

body-fixed and element frames is achieved by

v' - Z'v" (11)

The transformation matrix, Z', is defined as

Iz°tZ'= 0 Zo 6_J

in which. 6ij iS the Kronecker delta and Z e

i,j = 1,3 (12)

is the transformation matrix relating the

rotations between the element coordinate system and the body-fixed frame as
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Using the interpolation matrix, N'm, the incremental displacement vector, u", is

approximated in terms of the incremental total nodal vector, v", as

u"= N'mv" (14)

Based on the Reissner-Mindlin plate theory, the incremental displacement vector

for a flat laminate can be expressed as

{ y,,,z,,,tf.0,x,.,y,,,t fey.,x,,,y,,,}u" = u-(x", y", z") = _0(x" ' y") + z" ex,(x" ' y")

=,-(x", y", z") w-0(x", y") 0
(15a)

or

u"- u'_ + z"0'_ (15b)

in which u0, _*0, and _0 represent mid-surface displacements. The in-plane

displacement components in the x" and y" directions are denoted by u. and _-,

respectively. The out-of-plane deflection is represented by _. The incremental

displacement and rotation vectors associated with the mid-surface, u'_) and e'_, are

approximated in terms of the nodal unknown displacements as

u' b = Nmuv" and e'_) = NrreV" (16)

where v" is the incremental total nodal vector and Nmu and Nine are the interpolation

matrices for translational and rotational displacement fields. Substituting for the mid-

surface displacement and rotation vectors, u'_ and 0'_, in Eq. (15) results in

U" = (Nmu + z"Nme)V" (17)

Thus, the explicit form of the interpolation matrix, N'm, in Eq. (14) can be established

as
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N'm = Nmu + z"Nm e (18)

Substituting from Eq. (14) into (10) in conjunction with Eq. (11) results in

u' - ZN'm Z'T v' (19)

Comparison of Eqs. (19) and (7) provides the expression for N m as

N m = ZN'm Z'T (20)

After substituting from Eq. (9), along with Eq. (20), into Eqs. (5) and (6), the first

integral, corresponding to the virtual work due to inertial forces in the kth element at

time t + At, can be expressed in matrix form as

tvP sRT I_dtV " f

in which

MRR = p tv I ,

6R° t T I MRR MRs" MRv'
BY' Lsym. My,v,

{ 0tf,R0ti,l ,2+ 8=_- gl + g2

v' By' h I + h 2

MR,_ =-PTItv_"dtV T T

(21)

MRv, - PTZIt N'mdtV Z "T ,
V M=.,_ = -pTZltv _''' 7"dtV Z T T T

Mw. v. = pTZltvT"N'mdtV Z "T
My.v. = pZ" r N" TN'mdtV Z "T

jt v m

r

fl = 2pTZD"/ N'_n dtV v"
J t V f2 = pT_'_,' Itvr'd tv

gl = 2pTZ r 7",_"N" dtV v" ,

jt V m g2 = PTZIv_"_"_"r"dtVt



h1 2pZ" ftvN'_n T _"N"mdtV '"
== V i I N,mT _,,_,,r,,dtVh2 = pZ" tv

where the identity matrix is denoted by I.

Virtual work by internal stresses.

work by internal stresses,

material in the form [13]

K

k..1

The second integral, representing the virtual

in Eq. (1) can be expressed for a laminated composite

hk K hk

A hk_I k=1 A hk_I

tEl_ to'(k) dz dta

K hk

tA hklk=l

where K denotes the number of layers in the laminate. The position of the layers in

reference to the mid-surface is specified by hk. The thickness of the kth layer is given

by tk = hk - hk_1 . At time t, tA represents the projections of the surface area on the

(x", y") plane. The stress and strain components are related through the relation a (k) =

_k) EL ' in which _'k) is for the kth orthotropic lamina referenced to the arbitrary axes.

Each layer is assumed to be homogeneous, elastic, and orthotropic with elastic moduli,

EL and ET; shear modulus, GET ; and Poisson's ratio, ULT. The subscripts L and T

specify the longitudinal and transverse directions relative to the fibers in the layer with

thickness t.

The linear and nonlinear components of the Green's strain tensor in vector form are

expressed as
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EL m

1

t-"0, y- + Z" ex-,y-

_0.y-+_0,x- 0

t [ ho, x. Oy" t

_02.x" + 2 2O,x" + u"O, x"

2 2 2
a'0.y" + W0.y" + w'0,y"

2(_0,x-_0.y- + u-0.x-_*0.y- + _0.x-Z,_0,y-)

(23)

where h0(x", y") describes the surface of the shallow shell. As given by Tessler [11],

the linear component of the Green strain tensor is based on the Reissner-Mindlin

definition combined with the Marguerre shallow shell theory. The nonlinear strain

vector, ENL, is an approximation to its complete form.

Substituting for the strain components and performing integration along the

transverse direction in Eq. (22) lead to

I _ teLTCteL d ta+ It A' tET tsm d ta+ I 5tel T's d'atA t A
(24)

in which C is composed of the extensional, coupling, bending, and transverse stiffness

matrices, A, B, D, and G

C

A B O]
B D 0

0 0 G

the vector ts, which contains the in-plane resultant forces, tSm, moments, t%, and shear

resultant forces, tSq, iS in the form

tsT = {tSm tsb tSqJ (25)
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The vector teL is composed of incremental mid-plane strain, curvature, and transverse

shear components,

teL " {'_O.x"- ho.x'ey", _O.y" - ho.y"ex", _O,y" + _O.x" - ho,x"ex"

- ho.y-Sy-, ey- x-, ex-y- , ex-,x- + ey-,y,., _O,x" + ey-, _O.y" + ex,.} (26)

The incremental in-plane mid-plane displacement components are approximated by

cubic interpolation functions, .A/'skand ..4/'=¢,as in Tessler [11],

- .A/'sk + .,4P_ + F_se_. _ (27)

u'0 k=l u'0k k=4 _0k

where _0k and U-0k are the in-plane displacements specified at the nodes. The

displacements corresponding to the corner nodes are specified by e,.0k,_0k with k - 1,

2, 3. The .remaining ='Ok and U-0k represent the intra-edge displacements. The

displacements at the center of the element are given by =0¢. The mid-plane transverse

displacement field is approximated by a quadratic interpolation function, /fsk, as

6

_o = _.. Jf'(sk_Ok (28)

k=l

where _0k correspond to the corner and mid-edge nodes.

The mid-plane out-of-plane rotational components are approximated by linear

interpolation functions, _k, as

" __ Ek (29)
By. k=l ey._<

where 8x,._ and ey,.k are nodal rotations at the corner nodes.

In matrix notation, Eqs. (27)-(29) can be rewritten as

" + +.... (30)u0 = Nsuv" + NsuV + NscVc
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where

e'; = Nsev" (31)

u"0T " {_0, _*0, _0} and e''T -{ex,., 8y., 0}

v"T = {u"01 ' u'01, u)'01' _x'l' (_y"l , Oz'l' "'" u"03' u'03' e°'03' ex"3' (_y"3' Oz"3}

_"T = {=,04, .--, "_09, °'04 ..... _09, _04, _05, u-"oe}

,,T
v ¢ = {_oc, _oc}

The matrix of interpolation functions, Nsu, is dependent on JV"si and "fZsi (i = 1, 2, 3).

The shape function matrix, I_su, involves J'si (i = 4 ..... 9) and JZsi (i = 4 ..... 6). The

matrix Nsc contains only JV'sc. The shape matrix, Nse, is composed of the area

coordinates _i (i = 1, 3). Although ez,,k (k - 1, 2, 3) do not exist, they are included in the

formulation because the transformation to body-fixed coordinates leads to non-zero

rotations in all axes.

The intra-edge displacements included in _/" are expressed in terms of corner

displacements, v", through an appropriate transformation

_'" = L v" (32)

The transformation matrix, L, is obtained by imposing constant strain conditions along

the three edges of the element. The explicit form of these constraints and the detailed

form of L (in partitioned form) are given by Tessler [11].

Substituting from Eq. (4) into Eq. (30) and combining the resulting equation with Eq.

(31) lead to

(33)

-i-

-where N_u = Nsu + NsuL. This relationship can be taken as the basis in formulating the
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strain-displacement transformation matrix, g_s, in the form

gYs = [_su, _se] (34)

where _'su and gYse are defined such that the resultant strain vector, teL, given by Eq.

(26) can be obtained from

with

}tel -

This form of vector tel allows the first integral in Eq. (24) to be rewritten as

8 telT C teLd ta =

tA

kLll kL12

kT12 kL22

f V, )

v';: t

I "T T "T T= (NsuGYsu C _'suNsu + Nsu_suC _seNse
kL11 t A

T T _su Nsu T T+ Nse_seC + Nse_'s_C _seNs_)d ta

(35)

(36)

and

I "T T T T= (Nsu._'suC gYsuNs¢ + Nse_s0C _BsuNsc)d ta
kL12 tA

I T T- Nsc_'suC _suNs¢ d ta
kL22 t A

Assuming external or internal loads are not applied at the center node of the element,

the stiffness matrix, kL, can be condensed statically to a smaller sized matrix, k L,

-1 T
kL = kL11 - kL12kL22kL12

where k_. represents the condensed stiffness matrix. It consists

freedom, including the 8z artificial degree of freedom at each corner node.

(37)

of six degrees of



a$

-14-

The second integral in Eq. (24) can be rewritten in terms of the total nodal vector

I (5_E_L tsm - k 0
dta (5 v,,T V"

tA

where the geometric stiffness matrix, kg, is defined by

r

kg = / NTmugyT tSm ._ Nmu
dta (39)

J
t A

in which the matrix differential operator gY and tS m are explicitly given by Madenci

and Barut [13]. The tangential stiffness matrix, k T, is defined by

kT = kL + kg (40)

By substituting from Eqs. (25) and (35), the third integral in Eq. (24) can be

rewritten in the form

I (5 telT ts dta (5 v ''T kL v"" (41)
Ira,

tA

The vector of nodal displacements, v"', corresponds to local deformations between the

initial and the updated configurations of the elements. It is determined by subtracting

the rigid-body motion from the total displacements. The deformational out-of-plane

nodal rotations are determined by the methods provided by Rankin and Brogan [14].

With the use of Eqs. (36), (38), and (41), in conjunction with Eq. (11), the second

integral, representing the virtual work by internal stresses in the kth element, is

expressed in matrix form as
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J t+At¢_ ._t ET t" dtv

tV f 8R0 }T
6V'

0OOIfR0}0 0 0

0 0 k_r v'

where

k_- l Z'(k L + kg)Z "T

T

I-of{:}+ <_=,,..

6v' kLv'"

and kL - Z"kLZ "T

(42)

Virtual work by external [orces. The virtual work due to nodal forces and

moments at the ith node of the kth element is expressed as

_':_)i =" _RTFi + (&,,.,.T+ _iT)Mi (43)

in which Fi and M i are the nodal force and moment vectors, respectively, at the ith

node. The position of the ith node in the kth element with respect to the origin of the

inertial frame is specified by Ri. The virtual rigid-body rotation of this element is

represented by _, and its elastic rotation at the ith node by a vector, _0i. Substituting

for 5Ri from Eq. (5) into Eq. (43) and using the property of the transformation matrix, T,

result in

6_7-_'i= 6RTFi + 6_TT(7'iF' i + M',) + _u'TF'i + 60'_M' i (44)

,T
Adding the contribution of each node and utilizing the definition of v i result in the

following expression for virtual work due to external loads in the kth element:

p.

(45)

where

3

=
i=1

_! = T_.. (_'iF'i + M'i)

i=1

and ....
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p,T. {p,T p,_" p,T}, with p,T= {F,T M,TI

Finite element equations o� motion. Substituting Eqs. (21), (42), and (45) into the

expression for virtual work (Eq. 1) and requiring the virtual quantities 6R0, (S_-,and _v'

to be arbitrary result in the coupled and highly nonlinear equations of motion between

time t and t + At for the finite element:

M(b)i_ + f= (b) = f(b) (46)

The solution vector, b, the mass matrix, M, and the vector, f, arising from external and

gyroscopic forces are defined as

{R°tb= ,¢,-

v'

; M=

MRR

Sym.

MRR MRv.

M,,_,o. M_v,

My, V,

; f=

"h

- fl - f2 [

M- gl - g2

p, _ h1 - h2

The vector due to internal stresses, f_, is given by

where

K T -

0 0

0 0

0 0

f,T = KT(b)b + tf_

0

0 and

0

tf_ = 0

k_.v""

(47)

The vector iF' is known from the previous increment between time t - At and t.

The equations of motion (46) for each element are assembled by usual techniques

to form the global equations of motion. Their solution provides the motion of the origin

of the body-fixed frame with respect to the inertial frame and the elastic deformations

of the body with respect to the body-fixed frame.



-17-

Numerical Results

Solution of the nonlinear global equations of motion is achieved by means of the

Newton-Raphson method in conjunction with the trapezoidal time integration scheme.

The construction of the solution vector b at time t + At involves iterations that begin

with the known solution vector tb at time t. The ith iteration of the solution vector b i is

decomposed as

b i =. bi_1 + Ab (48)

In constructing the solution vector b, the ith iteration of the solution method puts the

equations of motion (46) in the form

M(bi)b i + f_(bi) - f(bi) (49)

In order to gain computational efficiency in the construction of the mass and geometric

stiffness matrices, M and kg, respectively, the shape matrix, N m, is a reduced form of

the shape matrix for the shallow shell element. The explicit form of N m can be found in

Ref. [15]. The validity of the present analysis is established by considering a rotating

beam subjected to a spin-up maneuver [12]. In this study, the beam is modeled as a

with triangular shallow shell elements with the following boundarynarrow plate

conditions:

,._o(0, y', O) = _.0(0, y', O) = _o(0, y', O) = 0

a_° (o, y', o) = au'_° (o, y', o) = o
ax' ay'

The spin-up maneuver for this problem is specified as

_(t) =,
I<T o

T> T o
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where _0 " 7r/10 rad/sec and T O ,, 1 sec. The Young's and shear moduli for the beam

are given as E - 1.44 x 10s Ib/ft 2 and G = 5.54 × 107 Ib/ft 2. The cross-sectional area

and the length of the beam are A = 1 ft 2 and L = 100 ft, respectively. The moment of

inertia about the planar axes is specified as I = 0.08333 ft 4. The beam has a mass

density of p - 5.22 slug/ft 3. Since the beam is modeled as a plate, its thickness and

width are computed as h = 1 ft and W = 1 ft based on the values given for the moment

of inertia and the cross-sectional area for the beam. A comparison between the

considerably large transverse and axial displacements at the tip of the plate obtained

from the present analysis and those presented by Christensen and Lee is given in Fig.

3. The sequence of the motion with respect to the inertial coordinate system is

depicted in Fig. 4.

The capability of the present analysis is further demonstrated by considering a

laminated, cantilever blade tilted at 45 o and 90 ° angles with respect to the (x-y) plane.

The ptanform dimensions of the blade are specified by L = 2.5 m and W - 0.2 m. The

blade thickness of h - 0.04 m results from a laminate lay-up of [0°/90_]s. Each lamina

has the material properties EL = 181 GPa, ET = 10.3 GPa, GET = 7.17 GPA, and ULT =

0.28, with mass density p = 1600 kg/m 3. The applied spin-up maneuver is the same as

that specified for the previous problem, with n o = 10_ rad/sec and T o = 0.05 sac. The

influence of tilt angle on the tip displacements is illustrated in Fig. 5. As shown in this

figure, the difference in maximum tip deflections is rather significant. When the blade is

tilted at a 45 o angle, the difference between the transverse deflections at the left and

right corners of the blade indicates that the tip of the blade undergoes twisting. These

corner displacements are presented in Fig. 6. With respect to the inertial frame, the

sequence of deformations for a blade tilted at angles of 0 ° and 450 is illustrated in Fig.

7.
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Conclusions

A variational formulation that accounts for changes in motion-induced stiffness

while determining the structural response of moderately thick laminated shells within

the realm of a multibody dynamics formalism has been presented. This methodology

also provides the inertial forces as part of the solution for corresponding external

forces. Although demonstrated herein on simple geometric configurations, this analysis

is general enough to treat curved laminates. This formulation represents an

advancement in state-of-the-art analysis of rigid-body dynamics coupled with nonlinear

elastic deformations.
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Figure 2.

Figure 3.
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Figure 6.
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FIGURE CAPTIONS

Kinematics of a point in an element due to rigid-body motion and local

deformation.

Element coordinate system and degrees of freedom for a triangular shallow

shell element.

Transverse and axial tip displacements along the center line of a rotating

narrow plate

A narrow plate undergoing a sequence of deformations in reference to an

inertial frame.

Transverse tip displacements along the center line of a rotating laminated

blade.

Transverse tip displacements at the corners of a rotating laminated blade.

'Sequence of deformations for a blade tilted at angles of 90 ° and 45°.
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